Cells seem to decode their fate through optimal information processing

Cells seem to decode their fate through optimal information processing

That prompted a group at Princeton University, led by the biophysicists Thomas Gregor and William Bialek to suspect something else: that the cells could instead get all the information they needed to define the positions of pair-rule stripes from the expression levels of the gap genes alone, even though those are not periodic and therefore not an obvious source for such precise instructions. Over the course of 12 years, they measured morphogen and gap-gene protein concentrations, cell by cell, from one embryo to the next, to determine how all four gap genes were most likely to be expressed at every position along the head-to-tail axis. Now they had: Even given the limited number of molecules and underlying noise of the system, the varying concentrations of the gap genes was sufficient to differentiate two neighboring cells in the head-to-tail axis — and the rest of the gene network seemed to be transmitting that information optimally.

Source: www.quantamagazine.org